随着能源需求的增加和可再生能源的普及,电池储能系统在能源领域发挥着越来越重要的作用。
将从多个角度介绍电池储能系统的工作原理、应用领域以及其对社会环境的影响。
电池储能系统的工作原理基于电池的充放电过程。
当系统需要储存能量时,电池会从外部电源充电,将电能转化为化学能,以便在未来使用时释放出来。
当系统需要能量时,电池会通过逆过程,将储存的化学能转化为电能供给负载使用。
交流侧接入的方案不仅适用于电网储能,还被广泛应用于诸如岛屿等相对孤立的地区,形成相对独立的微型电网供电系统。交流侧接入的储能系统不仅可以在新建电站上实施,对于已经建成的电站也可以很容易的进行改造和附加建设,且电路结构清晰,发电场和储能电场可分地建设,相互的直接关联性少,因此也便于运行控制和维修。缺点是由于发电和储能相互独立,相互之间的协调和控制就需要外加一套专门的智能化的控制调度系统,因此造价相对较高。
如果网络系统中没有足够的余热可以回收,单靠地埋管换热器或地表水资源,很难达到这样高的温度。此时需要有补热,可以利用太阳能热水集热器。这就遇到与智能电网同样的问题,即供应侧是可变可再生能源,需要蓄热系统进行平衡。因为Ebus需要的是提供给热泵的常温热源(冬季热泵供暖需要的温度与夏季气温量级相同,反之亦然),因此也可以利用季节性蓄热。