装到外壳时,一般游隙配合多,外圈有过盈量,通常用压力机压入,或也有冷却后安装的冷缩配合方法。用乾冰作冷却剂,冷缩配合安装的场合,空气中的水分会凝结在轴承的表面。所以,需要适当的防锈措施。
2轴承材料
滚动轴承的套圈和滚动体,一面反覆承受高接触压力,一面进行伴随有滑动的滚动接触。保持架,一面与套圈和滚动体的两旁或其某一方滑动接触,一面承受拉力和压缩力。因此,对轴承的套圈,滚动体及保持架的材料、性能等主要要求如下:
运行中的转子出现不平衡是必然;特别是高速回转的机械振动,转子不平衡是主要激振力;如风机、水泵电机、汽轮发电机组等,其振动主要原因是转子不平衡,因此解决转子不平衡是消除现场运行振动的一项重要措施。过去人们习惯于转子离机平衡,即在专门的动平衡机上进行平衡。这样做需要揭盖、拆卸、运输转子等工序。检修时间长,工序复杂,费用高,对大型转子尤其困难。柔性转子的动平衡超临界转速工作的转子在启动和制动时,转速必定通过临界转速,这时不平衡量会使转子产生明显的变形。若转子各微段质心对回转轴线的偏离对变形有明显的影响,则转子不能按刚性转子处理,相应的动平衡称为柔性转子的动平衡。方法有两种:①振型法。将不平衡量按转子的各阶固有振型分解。若动平衡时的转速接近某临界转速,则这一阶固有振型突出于其他各阶之上。通过检测该振型,就可找到为消除这一阶不平衡分量所需的校正质量的大小和应放置的位置。逐阶进行,就可完成动平衡。②影响系数法。在转子上选定若干个校正面和若干个测量面并进行多次运转校正。某校正面上单位校正量在一定转速下引起的某测量面的振动就是一个影响系数。通过测量或计算求出这些影响系数,便可根据不平衡量引起的振动,确定为将各测量面的振动限制在某量值以下,各校正面应加配重(或去重)的位置和大小。在这两个方法的基础上还发展了其他方法,例如振型圆法等。随着高速主轴的不断应用和发展,对主轴各项指标的要求越来越高创。高速机械主轴动不平衡和振动成为影响加工精度的重要因素。资料显示,由于振动原因导致设备失效占比为60%-70%,即使是精度极高、经过良好静平衡的机床主轴,也会存在设计、制造、工件装夹、磨损、负载冲击等多种原因破坏原有平衡状态。通用的离线动平衡方法对于高速主轴平衡调试过程中需要数次开关机才能将设备进行精准的调试。对于刚性转子和柔性转子在必要时需要将其拆下,放到特定平衡机上进行平衡调试,复杂繁琐平衡过程导致平衡效率低,调试精度不能达到要求,这些平衡方法己不能满足现代企业生产要求,必须要实现更加效、确平衡技术和平衡装置的发展和。